食品科学网致力于食品科学知识的整理与编辑,建立食品科学知识库!友情提示请通过以下搜索框查询食品科学知识。

2008-09-05

糖类的化学结构及理化性质

  一类多羟醛(酮)化合物,生物体内主要的供能物质,有的糖类衍生物可与蛋白质或脂类结合,发挥多种生物学功能。糖是生物界分布最广泛的一类有机化合物。主要由碳、氢、氧等元素组成,因分子中氢氧之比多为2:1,与水的组成相同,故曾称为碳水化合物(但有例外,如脱氧糖及氨基糖类分子中,氢、氧之比不是 2:1;又如乙酸、乳酸虽不是糖,但分子中氢氧之比却为 2:1)。这类化合物含羟基(-OH)较多,还含有醛基或酮基,所以都属于多羟基醛或酮的衍生物。糖的分子大小相差悬殊。一般糖类可根据分子大小分为单糖、二糖(双糖)、寡糖及多糖;亦可根据所含官能团的不同分成醛糖及酮糖。糖是人类重要的营养素。人类每日均摄入相当数量的含糖食物。糖类经消化吸收后,在组织细胞中氧化分解,释放出能量以供机体利用。还可经其他途径转化为机体的结构成分。一旦糖的吸收、代谢过程失调,则将导致疾病的发生。
  化学结构及理化性质  糖类可按分子大小分为单糖、二糖、寡糖、多糖等。
  单糖  是单独存在的多羟醛或酮,它不能再被水解成更简单的糖。根据所含碳原子数目的多少,单糖可分为丙糖、丁糖、戊糖、己糖及庚糖等。几种常见的醛糖及酮糖见表。

  除二羟丙酮外,所有单糖均含有一个或多个手性(或称不对称)碳原子(图1)。

  这样的碳原子是与 4种不同的原子或原子团相连接。由于原子或原子团所在空间位置的不同,形成不同的立体异构体,其数目决定于单糖所含手性碳原子的多少,如丙醛糖(甘油醛)只含一个手性碳原子,可能存在的立体异构体数目为21=2。又如己醛糖含有 4个手性碳原子,故可能存在24= 16个立体异构体。这些立体异构体可根据离官能团最远的手性碳原子上羟基所在的位置而分为D-系(羟基在右侧)和 L-系(羟基在左侧)(图2)。每个单糖的D-系和L-系异构体彼此恰为镜影,故称为对映体,这与单糖的旋光方向无关,只表示其最后一个手性碳原子的构型。含有5个或5个以上碳原子的单糖,其分子结构除可用上述直链(或开链)结构表示外,还可以环状结构来表示,羰基与碳原子4或5(或6)缩合,借氧桥形成一个五元或六元环,因结构类似五元杂环化合物呋喃或六元杂环化合物吡喃,故称为呋喃环或吡喃环(图3)。在此两种环状结构中,羰基碳原子上连接有一个醚基和一个羟基两个官能基团,这种结构称为半缩醛(或半缩酮)。由于其羟基所在位置的不同,又出现了α、β两类立体异构体,凡羟基在环状平面下方的,称为α型;反之,则称为β型(图4)。在六元的吡喃环中,六个原子并不在同一平面上,其所形成的环在三维空间上是以椅式或船式的构象出现(图5),但以较稳定的椅式为主。单糖因含有极性羟基,所以都易溶解于极性溶剂水中,而不溶于非极性溶剂中;由于羟基的存在,各分子间可形成氢键而彼此相连,故其水溶液沸腾时需要一部分能量以克服分子间的这种引力,所以沸点均有所提高。单糖是结晶固体,绝大多数具有甜味。凡含自由羰基(-C=O)或潜在羰基的单糖都具有还原性,能使Cu2+(蓝色)还原成Cu2+(砖红色),此化学性质常被利用来定量测定血及尿中葡萄糖的含量。单糖可被硼氢化钠还原生成相应的多元醇(通常称为糖醇),如D-葡萄糖被还原为山梨醇,D-甘露糖被还原为甘露醇等,这类多羟化合物具有吸水作用,故临床上常用作利尿药。单糖还能与酸生成酯,与醇(或酚)生成醚等。浓酸能使具有半缩醛结构的单糖分子内脱水形成糖醛及其衍生物,它们能与各种酚类物质化合生成各种不同的有色物质(机理不清),可借以鉴定不同的糖。

  单糖分子中的潜在羰基上的羟基可与其他含羟基物质的羟基之间脱水缩合形成苷键(糖苷键),所生成的化合物称为糖苷。若该含羟基物质是另一分子单糖,则形成的糖苷即为双糖,可按潜在羰基上的羟基伸向环的平面下方或上方,将其区分为 α糖苷键或β糖苷键。
  二糖  又称双糖。是水解后能产生两分子单糖的糖。已知几乎所有的二糖均属糖苷。由两分子相同的单糖借糖苷键相连形成的二糖,称均二糖,如麦芽糖、异麦芽糖及纤维二糖,它们虽全由两分子葡萄糖相连而成,但它们之间的糖苷键性质不同,麦芽糖中两分子葡萄糖借α-1,4糖苷键相连,异麦芽糖中借α-1,6糖苷键相连,纤维二糖则借β-1,4糖苷键相连。由于它们分子中均有一个葡萄糖残基仍保留半缩醛基,故具有还原性。二糖并不以游离状态广泛存在,通常是由多糖经部分水解而得到。天然广泛存在的二糖是由两种不同的单糖分子借糖苷键相连形成,称杂二糖,如蔗糖、乳糖等。蔗糖由一分子葡萄糖与一分子果糖借β-1,2糖苷键相连而成,其分子中不再具有半缩醛基,故无还原性。乳糖由一分子半乳糖与一分子葡萄糖借β-1,4糖苷键相连形成,因分子中还保留有葡萄糖残基的半缩醛基,故仍具有还原性。
  寡糖  在水解后产生3~10个单糖,单糖残基间亦借糖苷键相连,分子中仍保留有半缩醛基者则具有还原性,否则就无还原性。一般单独存在者较少,多数以短糖链形式参与糖蛋白及糖脂的组成。
  多糖  完全水解后可产生10个以上单糖的糖。有的多糖由相同的单糖分子借糖苷键相连而成,称均多糖,如淀粉、纤维素及糖原等。也有的由几种不同的单糖分子借糖苷键相连而成,称杂多糖,如果胶、透明质酸、硫酸软骨素、肝素等的糖部分。淀粉、糖原、纤维素是最常见的多糖,它们水解后只产生葡萄糖,故可称为葡聚糖,可由几百甚至几千个葡萄糖残基组成,因此分子量很高。在其分子中只有一个链端葡萄糖残基仍保留半缩醛结构,故称为还原端;而其他链端均无此结构,故称非还原端;所以这些大分子化合物几乎无还原性。淀粉是植物储存的养料,是人类食物中主要的糖类来源,一般是由20%的直链淀粉和80%的支链淀粉组成的混合物。直链淀粉中葡萄糖残基均通过α-1,4糖苷键相连,形成无分叉的链状化合物,但呈螺旋形存在,螺旋中心恰好可容纳碘,当碘陷入此孔隙中,即与其形成深蓝色的络合物,此反应很灵敏,一般用来检查有无淀粉存在。支链淀粉为有分支的多聚物,分子中的主要部分由葡萄糖残基通过 α-1,4糖苷键相连,而每隔20~30个葡萄糖残基,即出现一个由 α-1,6糖苷键相连形成的分支,所以分子呈多分支状。糖原的结构似支链淀粉,在其分子中每隔8~10个葡萄糖残基就出现一个 α-1,6糖苷键,故分支较支链淀粉更密。糖原是动物体内储存的营养素,存在于动物各组织中,但以肝及肌肉中贮量最多。糖原可溶于水,能与碘形成淡红色络合物。纤维素是由葡萄糖残基借β-1,4糖苷键相连而形成的线形直链大分子,是植物细胞壁的主要成分,不溶于水、稀酸、稀碱及有机溶剂。人类消化道中无消化纤维素的酶,故人不能利用纤维素。植物杂多糖,如果胶,是由半乳糖、半乳糖醛酸、阿拉伯糖、醋酸及甲醇等几类物质混合组成的高分子量糖,具有胶体特性,存在于水果和蔬菜中。常见的动物杂多糖如属于氨基多糖类的透明质胶、肝素、硫酸软骨素、硫酸角质素、硫酸皮肤素等的糖部分。它们水解后可产生两类或两类以上的己糖衍生物,常见者为不同的糖醛酸及氨基己糖。各单糖残基之间亦借 α-或β-糖苷键相连,分子大小差异较大,分子量可由几千至几百万。由于它们富含酸性基团而具有酸性;又因极性基团多,亲水性强,所以在水溶液中粘度大,故曾称为酸性粘多糖。它们不单独存在,而是由几个甚至数百个氨基多糖分子借共价键与蛋白质相连,形成复杂的含糖化合物,称蛋白聚糖。它们广泛存在于动物结缔组织、软骨及皮肤等组织中,起到润滑、保护、支持、粘合等作用。
  寡糖链与多糖链可借糖苷键与蛋白质或脂类相连,形成复杂的含糖化合物,称糖蛋白、蛋白聚糖及糖脂,是某些酶和激素的组成成分;并参与生物膜及结缔组织的组成等。

所有文章